
Creating Friendly Layers, 2022 Edition
Paul Barker, SanCloud Ltd

Yocto Project Summit, 2022.11



2 Yocto Project® | The Linux Foundation®

About Me

• Involved in Yocto Project since 2013

• Work across the whole embedded stack

• Principal Engineer @ SanCloud Ltd

• 📧 paul@pbarker.dev

• @pbarker@social.afront.org

mailto:paul@pbarker.dev
https://social.afront.org/@pbarker


3 Yocto Project® | The Linux Foundation®

• Custom & Off-The-Shelf Embedded/IoT Hardware

• Cloud hosted or on-site IoT Platform

• Open Source focussed

• Global customer base

• UK head office

About SanCloud

BeagleBone Enhanced (BBE)



4 Yocto Project® | The Linux Foundation®

About This Talk

• For layer creator & maintainers

• What & Why?

• Best Practices
• Layers to learn from
• Methods
• Examples

• Parsing details of bblayers.conf and layer.conf files



5 Yocto Project® | The Linux Foundation®

There Shall Be No Victims

• I won’t be showing examples of bad practice today

• Sorry to disappoint!



6 Yocto Project® | The Linux Foundation®

What is a Friendly Layer?

• Simply adding the layer doesn’t change functionality

• Doesn’t assume MACHINE, DISTRO, etc

• Careful use of bbappends

• Avoid clashing with recipe names in existing layers

• Place python helpers in a lib directory
• Avoid littering the global namespace



7 Yocto Project® | The Linux Foundation®

Why Should You Care?

• Yocto Project Compatible badge requires this

• Makes it easier to integrate with other layers
• Less likely to cause conflicts

• Easier to test and debug builds
• Can quickly turn features on and off

• Can reduce the number of layers you need to create
• Check MACHINE instead of having one layer per machine
• Check features instead of having one layer per feature

• Actually simplifies development of your layer



8 Yocto Project® | The Linux Foundation®

But Can’t You Just Dynamically Set BBLAYERS?

• Not in a multiconfig

• Not based on variables in local.conf or some layer
• So you may not even know MACHINE, DISTRO, etc

• Not even very easily in bblayers.conf
• Parsing limitations discussed later

• Dynamically creating bblayers.conf for each build means another 
script to maintain



9 Yocto Project® | The Linux Foundation®

Build a Friendly Community

• Provide documentation

• Provide clear contribution guidelines
• How to send patches
• Where to report issues
• If needed, adopt a Code of Conduct

• Use inclusive language 



10 Yocto Project® | The Linux Foundation®

Layers To Learn From

• meta-virtualization

• meta-clang

• meta-security

• meta-raspberrypi



11 Yocto Project® | The Linux Foundation®

Documenting Your Layer

• You need a README

• Consider adding a ‘docs’ folder at the top level
• Sphinx (http://www.sphinx-doc.org) is a good choice
• Can publish to Read the Docs (https://readthedocs.org)

• Also clearly identify
• Licensing
• How to contribute
• Support forums, mailing lists or email addresses

http://www.sphinx-doc.org/
https://readthedocs.org/


12 Yocto Project® | The Linux Foundation®

Keep layer.conf Simple

• Settings in layer.conf apply to all recipes
• Not just those in your layer

• Often difficult to override things set in layer.conf

• Parsed very early
• Details covered in appendix slides
• Parsed in BBLAYERS order not BBFILE_PRIORITY order



13 Yocto Project® | The Linux Foundation®

Adding New Content in Layers

• New content is typically safe to add
• New recipes
• New classes
• New machines
• New distros

• Watch out for name clashes
• Search the layer index first: https://layers.openembeded.org/

https://layers.openembeded.org/


14 Yocto Project® | The Linux Foundation®

Modifying Existing Recipes

• This is where you can cause problems

• Don’t indiscriminately modify variables and tasks

• Use overrides and conditionals

• Check MACHINE, DISTRO, feature variables, etc



15 Yocto Project® | The Linux Foundation®

Avoid Network Access Outside do_fetch

• Network access disabled by default outside do_fetch in 
recent releases

• Do not override this!
• Especially not for do_configure/do_compile/do_install
• Likely to break license compliance tooling, source archival 

and many other tools!



16 Yocto Project® | The Linux Foundation®

Use :remove With Caution

• :remove takes precedence over :append

• :remove cannot be undone easily!

• Avoid it if at all possible



17 Yocto Project® | The Linux Foundation®

Using Overrides

• Extend OVERRIDES based on a variable

• Use override syntax in variable assignments

• Document your new variable

• For example, if you support option `a` and option `b`:

OVERRIDES =. "option-${OPTION}"

SRC_URI:append:option-a = "file://a.patch"

SRC_URI:append:option-b = "file://b.patch file://b.conf"



18 Yocto Project® | The Linux Foundation®

Example: Toolchain Override in meta-clang

• In clang.bbclass:

OVERRIDES =. "${@['', 'toolchain-${TOOLCHAIN}:']['${TOOLCHAIN}' != '']}"

CC:toolchain-clang = "..."

CXX:toolchain-clang = "..."

CPP:toolchain-clang = "..."

CCLD:toolchain-clang = "..."

CLANG_TIDY_EXE:toolchain-clang = "..."

RANLIB:toolchain-clang = "..."

AR:toolchain-clang = "..."

NM:toolchain-clang = "..."



19 Yocto Project® | The Linux Foundation®

Using Features

• Much tidier than messing with overrides

• Three classes of feature variables:
• DISTRO_FEATURES
• MACHINE_FEATURES
• IMAGE_FEATURES

• Also have COMBINED_FEATURES
• Intersection of DISTRO_FEATURES & MACHINE_FEATURES



20 Yocto Project® | The Linux Foundation®

Conditional Syntax

• Python expressions
• Can call a function `fn` with the syntax `${@fn()}`

• Commonly used condition function:
• bb.utils.contains – is `checkvalues` a subset of `variable`?

def contains(variable, checkvalues, truevalue, falsevalue, d):

if checkvalues.issubset(variable):

return truevalue

else:

return falsevalue

*Actual code is slightly more complex



21 Yocto Project® | The Linux Foundation®

Conditional Inclusion

• You can use Python expressions in include and require 
statements

• Example:

require ${@bb.utils.contains('DISTRO_FEATURES', ...)}

• You can have a simple .inc file without conditionals if you 
have many changes to make based on one condition



22 Yocto Project® | The Linux Foundation®

Include vs Require Statements

• `require` errors on missing files
• You almost always want this

• `include` silently ignores missing files
• Useful for optional configs
• Useful when including something from another optional 

layer



23 Yocto Project® | The Linux Foundation®

Example: Distro Features in meta-virtualization

• README

The bbappend files for some recipes (e.g. linux-yocto) in this layer need to

have 'virtualization' in DISTRO_FEATURES to have effect. To enable them, add

in configuration file the following line.

DISTRO_FEATURES:append = " virtualization"

• linux-%.bbappend

include ${@bb.utils.contains('DISTRO_FEATURES', 'virtualization', '...', '', d)}

• No DISTO_FEATURES conditionals needed in the .inc file



24 Yocto Project® | The Linux Foundation®

Example: Conditional Inheritance in meta-integrity

• linux_ima.inc

inherit ${@bb.utils.contains('DISTRO_FEATURES', 'modsign',

'kernel-modsign', '', d)}

• No DISTRO_FEATURES conditionals needed in kernel-
modsign.bbclass



25 Yocto Project® | The Linux Foundation®

Adding Build-time Checks

• Add a handler for bb.event.SanityCheck
• Ensures your check only runs once

• Raise a flag if things look wrong
• bb.warn()
• bb.error()
• bb.fatal() if you really can’t continue

• Use this if you really must limit supported values of MACHINE, 
DISTRO, etc



26 Yocto Project® | The Linux Foundation®

Example: Checks in meta-virtualization

• sanity-meta-virt.bbclass

addhandler virt_bbappend_distrocheck

virt_bbappend_distrocheck[eventmask] = "bb.event.SanityCheck"

python virt_bbappend_distrocheck() {

skip_check = e.data.getVar('SKIP_META_VIRT_SANITY_CHECK') == "1"

if 'virtualization' not in e.data.getVar('DISTRO_FEATURES').split()

and not skip_check:

bb.warn("...")

}



27 Yocto Project® | The Linux Foundation®

Using Anonymous Python Functions

• Useful when more complex conditionals are needed

• Full support for python if statements, for statements, etc

• Executed at parse time

• Can use d.getVar() to check variables

• Can use d.setVar() to modify variables

• Example: python() {

if d.getVar('SOMEVAR').startswith('prefix'):

d.setVar('SOMEOTHERVAR', '1')

}



28 Yocto Project® | The Linux Foundation®

Using Classes to Modify Recipes

• Define a new class in your layer

• Do not set INHERIT in layer.conf or elsewhere

• Document that your functionality is enabled by adding 
the new class to INHERIT in local.conf or a distro conf

• Useful if you have similar modifications to make to many 
recipes



29 Yocto Project® | The Linux Foundation®

Modifying BBCLASSEXTEND

• Appending to BBCLASSEXTEND in a bbappend is 
relatively safe

• No need for conditionals here

• May be used to add `-native` variant of an existing recipe
• Can then be used in the build of another recipe



30 Yocto Project® | The Linux Foundation®

yocto-check-layer Script

• Layer compatibility test script

• Checks recipe signatures with and without the layer present

• Also checks for other common requirements:
• Does the layer have a README?
• Does everything parse correctly?
• Is LAYERSERIES_COMPAT set?
• Can we get signatures for `bitbake world`?

• Actual build is not perfomed



31 Yocto Project® | The Linux Foundation®

In Summary: Think About Downstream Developers

• How can they extend configuration?

• How can they disable things?
• Don’t force them to use :remove

• Don’t assume distro, machine or target image
• If support really is limited, add a sanity check



32 Yocto Project® | The Linux Foundation®

Appendix: bblayers.conf Parsing Details

• Parsed first

• Before any layer.conf
• Before local.conf or other user config files

• Before base.bbclass

• BBLAYERS is iterated as soon as bblayers.conf is fully parsed

• Can’t depend on variables from any of the above files

• No access to python lib directories from any layer

• Can’t `import oe` or any submodules

• Can’t use oe.utils.conditional(), use bb.utils.contains() instead



33 Yocto Project® | The Linux Foundation®

Appendix: layer.conf Parsing Details

• Parsed in sequence of BBLAYERS immediately after 
bblayers.conf

• Still before local.conf, base.bbclass, etc

• Still no access to python lib directories from any layer
• Including the current layer!



https://www.twitch.tv/yocto_project
https://twitter.com/yoctoproject
https://stackoverflow.com/search?q=yocto+project
https://www.linkedin.com/company/yocto-project/
https://www.youtube.com/user/TheYoctoProject/

