


Paul Barker
Principal Engineer
Konsulko Group

Open Source License 
Compliance with AGL



About Me

•Involved in Yocto Project since 2013

•Work across the whole embedded stack

•Principal Engineer @ Konsulko Group

•Web: https://www.konsulko.com/

•Email: pbarker@konsulko.com

https://www.konsulko.com/
mailto:pbarker@konsulko.com


Disclaimer

•I am not a lawyer

•This presentation is not legal advice

•Best practices are given based on my experience as a 
developer and an open source community member

•If in doubt, consult an appropriate lawyer



About This Talk

•Best practices and pitfalls to avoid
• Not specific to AGL

•License Compliance in AGL & Yocto Project
• Available tools
• Ongoing and future work



Why Care

•Selling an embedded device typically involves distribution of 
open source software

•This carries the risk of legal action if not done properly

•Doing this right gives you standing in the community

•Need to keep sources anyway so you can rebuild old releases 
with minor changes
• For debugging
• To satisfy customer requests

•Sources often disappear from the internet



The Fundamentals

•Provide license text and notices (BSD, MIT, etc)
• On device?
• In documentation?
• On website?

•Provide Complete Corresponding Source (GPL)
• Published directly?
• Via an offer letter?



The Distributed Image

•This is the image that’s actually distributed

•For devices: What is on the device when it is shipped 
to a customer?

•For downloads: What is in the file a customer 
downloads?



Single Command Build

•Probably the most important practice

•Reduces human error in build/release process



Test Your Releases!

•Your build/release process is non trivial

•It needs tests!
• Check for expected artifacts
• Check inside tarballs as well
• Check you can rebuild from source releases

•Automate your tests



Use Your Build System

•Build the Distributed Image with Yocto Project, 
Buildroot, etc

•Avoid modifying this image in a post-build script
• Lose access to the tools in your build system
• Easy to break license compliance this way

•You can move, copy, compress, etc the image in a 
post-build script



Factory Test

•What happens on device between initial image 
programming and distribution?

•On-device package management at this stage 
complicates things
• Again, very easy to break license compliance

•Try to limit additional data added at this stage
• Configuration data, calibration data, etc is fine



Proprietary Components

•License compliance also means not releasing source for 
proprietary components
• You need some filtering

•Test for accidental release!

•May be useful to have a separate pure open source 
image



Source Patches

•Remember to include these with sources

•Watch out for hidden patches
• Use of sed or similar tools in recipes or build scripts

•Make sure your system records the patch order



Recipes and Build Scripts

•GPLv2 says to include “scripts used to control 
compilation and installation”

•This may include full Yocto Project layers & bitbake, 
full buildroot tree, etc as appropriate

•There are different interpretations here
• I am not a lawyer



Docker

•A Dockerfile is not the Complete Corresponding Source 
for an image

•You may not even know exactly what is installed in 
your base image (FROM statement)

•Watch out when using containers in Embedded Linux



Pre-compiled Toolchains

•E.g. ARM toolchain, Linaro toolchain
• Built around gcc, glibc, etc

•Libraries from this toolchain typically end up in the 
distributed image

•Remember to capture the source code for this
•May not be well automated



Language-Specific Package Managers

•E.g. NPM, Cargo, etc

•These often have issues
•May not support offline compilation well
•May not offer an easy way to get the license text and/or correct 
source for dependencies

•You need to do your own research here



Makefiles

•Watch out for unadvertised network access in 
Makefiles or other build scripts
•May download additional sources with different license conditions
•May use online tools during build process, breaking offline builds

•Every sin you can think of exists in a project Makefile
somewhere



Metadata Bugs

•Licenses given in recipes may be incorrect or 
incomplete
• This does happen!

•Follow stable updates where possible

•For major commercial projects you should do your own 
verification
• Fossology can be useful here



Metadata Advice

•Avoid `LICENSE = “CLOSED”`
• Give your proprietary license a name and include it
• CLOSED disables license checksum verification

•Avoid `SRCREV = “AUTOREV”` in releases
• Too easy to mismatch images and released source
• Rebuilding the image in several months may give a different result



Common Licenses

•LICENSE_PATH is a space separated list of directories to 
search for generic license text

•A layer can have its own directory for license text
• Extend LICENSE_PATH in layer.conf

•Use this instead of `CLOSED` or `Proprietary` licenses 
if possible



Unique Licenses

•NO_GENERIC_LICENSE allows license text to be copied 
from the package source
• Set `LICENSE = "blah"`
• Set `NO_GENERIC_LICENSE[blah] = "blah_license.txt"`

•Use this rather than ignoring warnings
•Makes it easier to audit and to capture license text properly later



Providing License Text

•Many licenses require you to provide the license text and 
copyright notice(s) along with compiled binaries.

•Copy ${DEPLOY_DIR}/licenses after building an image
•May need some pre- & post-processing

•Include license text in images
• Set COPY_LIC_MANIFEST = "1" & COPY_LIC_DIRS = "1"
• Places files into /usr/share/common-licenses

•Create license packages
• Set LICENSE_CREATE_PACKAGE = "1"
• Places license text in /usr/share/licenses
• Provides an upgrade path for license text



Providing Sources

•Copyleft licenses typically require you to provide source code 
(including any modifications) along with compiled binaries.

•Yocto Project supports this with the archiver class

•Set `INHERIT += "archiver"` and choose the mode:
• ARCHIVER_MODE = "original"
• ARCHIVER_MODE = "patched"
• ARCHIVER_MODE = "configured"
• ARCHIVER_MODE = "mirror"

•The archiver can be configured further



Shallow Mirror Tarballs

•By default, git mirror tarballs contain full history

•Set the following to enable:
• BB_GIT_SHALLOW = "1"
• BB_GENERATE_SHALLOW_TARBALLS = "1"

•Can save a lot of space in a mirror
• 7.5 GB -> 1 GB in one recent project
•Works well with the mirror archiver



Copyleft Filtering

•COPYLEFT_LICENSE_INCLUDE
• Defaults to `GPL* LGPL* AGPL*`

•COPYLEFT_LICENSE_EXCLUDE
• Defaults to `CLOSED Proprietary`

•COPYLEFT_RECIPE_TYPES
• Defaults to target only
• Can add native, nativesdk, cross, crosssdk, cross-canadian



Providing Layers

•The best way to capture recipes and patches

•Publish as much of your layers as possible
• Either as tarballs or full git repositories
• Add them to the layer index if they’re open source 
(https://layers.openembedded.org)

•Isolate proprietary recipes from open source recipes

https://layers.openembedded.org/


Local Configuration

•When providing layers, watch out for changes in 
local.conf

•Two possible solutions:
• Version control local.conf
• Capture local.conf as part of the build

•Also consider including bblayers.conf



Excluding Unwanted Licenses

•The INCOMPATIBLE_LICENSE variable allows recipes to be 
excluded by license
• Prevents accidental inclusion of unwanted code

•Applies to target packages only

•meta-gplv2 layer may be needed if excluding GPL 3.0 or 
later

•Values should be standardised on the SPDX
License List to avoid confusion
• See https://spdx.org/licenses/

https://spdx.org/licenses/


License Flags

•Another method of excluding recipes by license class

•May be used to highlight non-copyright issues
• Patented algorithms
• Commercial license / EULA

•Flagged recipes are excluded by default
• Set LICENSE_FLAGS_WHITELIST to enable them



Issues with Language Package Managers

•Many newer languages use their own package managers
• Go, NPM (nodejs), Cargo (Rust)

•These present issues for Embedded development and 
license compliance
• These just don’t seem to be first class concerns

•Features we need from these package managers
• Offline build support
• Download source archive

• Including license text & other collateral
• HTTP/HTTPS proxy support
• Source mirror support



Generating SPDX Documents
•SPDX (https://spdx.dev/) is “An open standard for communicating 
software bill of material information, including components, 
licenses, copyrights, and security references.”

•SPDX is supported in Yocto Project by the meta-spdxscanner layer
• Provides tools to scan source code for licenses and work with SPDX documents
• These processes are typically slow

• May extend build times by several hours
• Usable on release builds, may be intolerable on day-to-day dev builds

• See http://git.yoctoproject.org/cgit/cgit.cgi/meta-spdxscanner/

•Supports scancode-toolkit for SPDX document generation
• Set INHERIT += "scancode-tk" in local.conf
• Or use inherit scancode-tk in desired recipes
• See https://scancode-toolkit.readthedocs.io/en/latest/

https://spdx.dev/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-spdxscanner/
https://scancode-toolkit.readthedocs.io/en/latest/


Integrating with Fossology
•Fossology is a more fully featured system for compliance scanning 
and signoff
• Runs as a service with a web interface and an API

• Integration is also provided by the meta-spdxscanner layer
• fossology-python or fossology-rest bbclasses may be used
• Upload source code to a Fossology instance

•Scanning, review and document generation is done 
asynchronously through the Fossology interface
• SPDX documents are not generated directly as part of the Yocto Project build

•See https://www.fossology.org/

https://www.fossology.org/


Future Work
•Better integration with language package managers
•May require changes to NPM, Cargo, etc

•Automatic generation of a plain text or HTML license document 
for an image

• Integration with other license compliance tooling
• OSS Review Toolkit (https://github.com/oss-review-toolkit/ort)

•License scanning & SPDX document generation for Yocto Project 
releases
• Provide a feedback loop to confirm license metadata in recipes
is correct
• Non-trivial!

https://github.com/oss-review-toolkit/ort


Q & A


