N\ mmmm

AUTOML TIVE Konsulko
GRADE LINUX Group

=
—
1(@ 2(;

N oood

®
AUTOML TIVE
GRADE LINUX

Open Source License
Compliance with AGL

Paul Barker
Principal Engineer Group

Konsulko Group

About Me s

Group

Involved in Yocto Project since 2013
*Work across the whole embedded stack
*Principal Engineer @ Konsulko Group

*Web: https://www.konsulko.com/

Email: pbarker@konsulko.com

https://www.konsulko.com/
mailto:pbarker@konsulko.com

Disclaimer AUTOM: TIve

| am not a lawyer
*This presentation is not legal advice

*Best practices are given based on my experience as a
developer and an open source community member

*If in doubt, consult an appropriate lawyer

About This Talk m

*Best practices and pitfalls to avoid
* Not specific to AGL

*License Compliance in AGL & Yocto Project

* Available tools
* Ongoing and future work

Why Care s

*Selling an embedded device typically involves distribution of
open source software

*This carries the risk of legal action if not done properly
*Doing this right gives you standing in the community

*Need to keep sources anyway so you can rebuild old releases

with minor changes
 For debugging
» To satisfy customer requests

*Sources often disappear from the internet

The Fundamentals Ao e

*Provide license text and notices (BSD, MIT, etc)

* On device?
* |In documentation?
 On website?

*Provide Complete Corresponding Source (GPL)
 Published directly?
* Via an offer letter?

[}
AUTOM.L TIVE

Group

The Distributed Image

*This is the image that’s actually distributed

*For devices: What is on the device when it is shipped
to a customer?

For downloads: What is in the file a customer
downloads?

[}
AUTOM.L TIVE

Group

Single Command Build

*Probably the most important practice

*Reduces human error in build/release process

Test Your Releases! e

*Your build/release process is non trivial

|t needs tests!

* Check for expected artifacts
* Check inside tarballs as well
* Check you can rebuild from source releases

* Automate your tests

AUTOM.L TIVE

Group

Use Your Build System

*Build the Distributed Image with Yocto Project,
Buildroot, etc

* Avoid modifying this image in a post-build script
* Lose access to the tools in your build system
 Easy to break license compliance this way

*You can move, copy, compress, etc the image in a
post-build script

Factory Test

AUTOM.L TIVE
GRADE LINUX

What happens on device between initial image
programming and distribution?

*On-device package management at this stage

complicates things
« Again, very easy to break license compliance

*Try to limit additional data added at this stage

 Configuration data, calibration data, etc is fine

AUTOM.L TIVE

Group

Proprietary Components

*License compliance also means not releasing source for

proprietary components
* You need some filtering

*Test for accidental release!

*May be useful to have a separate pure open source
image

Source Patches Ao e

Remember to include these with sources

*Watch out for hidden patches

 Use of sed or similar tools in recipes or build scripts

*Make sure your system records the patch order

[}
AUTOM.L TIVE

Group

Recipes and Build Scripts

*GPLv2 says to include “scripts used to control
compilation and installation”

*This may include full Yocto Project layers & bitbake,
full buildroot tree, etc as appropriate

*There are different interpretations here
* | am not a lawyer

[}
AUTOM.L TIVE

Group

*A Dockerfile is not the Complete Corresponding Source
for an image

*You may not even know exactly what is installed in
your base image (FROM statement)

*Watch out when using containers in Embedded Linux

[}
AUTOM.L TIVE

Group

Pre-compiled Toolchains

*E.g. ARM toolchain, Linaro toolchain
* Built around gcc, glibc, etc

Libraries from this toolchain typically end up in the
distributed image

Remember to capture the source code for this
* May not be well automated

Language-Specific Package M@pggﬁs

*E.g. NPM, Cargo, etc

*These often have issues

* May not support offline compilation well
* May not offer an easy way to get the license text and/or correct
source for dependencies

*You need to do your own research here

Makefiles AUTOM: TIvE

*Watch out for unadvertised network access in

Makefiles or other build scripts
* May download additional sources with different license conditions
* May use online tools during build process, breaking offline builds

*Every sin you can think of exists in a project Makefile
somewhere

Metadata Bugs i

Licenses given in recipes may be incorrect or

incomplete
* This does happen!

*Follow stable updates where possible

*For major commercial projects you should do your own

verification
* Fossology can be useful here

Metadata Advice e

*Avoid LICENSE = “CLOSED”"

* Give your proprietary license a nhame and include it
« CLOSED disables license checksum verification

*Avoid SRCREV = “AUTOREV” " in releases

 Too easy to mismatch images and released source
 Rebuilding the image in several months may give a different result

Common Licenses Group AUTOM: TIvE

*LICENSE_PATH is a space separated list of directories to
search for generic license text

A layer can have its own directory for license text
« Extend LICENSE_PATH in layer.conf

«Use this instead of CLOSED or Proprietary licenses
if possible

Unique Licenses ATSEL T

*NO_GENERIC_LICENSE allows license text to be copied

from the package source
*Set LICENSE = "blah"
*Set NO GENERIC LICENSE[blah] = "blah license.txt"

*Use this rather than ignoring warnings
* Makes it easier to audit and to capture license text properly later

Providing License Text Group gl

*Many licenses require you to provide the license text and
copyright notice(s) along with compiled binaries.

*Copy ${DEPLOY DIR}/licenses after building an image
* May need some pre- & post-processing

Include license text in images
*Set COPY LIC MANIFEST = "1" & COPY LIC DIRS = "1"
* Places files into /usr/share/common licenses

*Create license packages
*Set LICENSE CREATE PACKAGE = "1™
* Places license text in /usr/share/licenses
* Provides an upgrade path for license text

Providing Sources Ao TS

* Copyleft licenses typically require you to provide source code
(including any modifications) along with compiled binaries.

*Yocto Project supports this with the archiver class

Set INHERIT += "archiver" and choose the mode:

* ARCHIVER MODE = "original"
* ARCHIVER MODE = "patched"
* ARCHIVER MODE = "configured"

* ARCHIVER MODE "mirror"

* The archiver can be configured further

Shallow Mirror Tarballs Group AVTOY IV

By default, git mirror tarballs contain full history

Set the following to enable:
BB GIT SHALLOW = "1"
* BB GENERATE SHALLOW TARBALLS = "1™

«Can save a lot of space in a mirror

«7.5 GB -> 1 GB in one recent project
« Works well with the mirror archiver

Copyleft Filtering Group

*COPYLEFT_LICENSE_INCLUDE

e Defaults to GPL* LGPL* AGPL*

*COPYLEFT_LICENSE_EXCLUDE

« Defaults to CLOSED Proprietary

*COPYLEFT_RECIPE_TYPES

 Defaults to target only
« Can add native, nativesdk, cross, crosssdk, cross-canadian

Providing Layers AR TS

*The best way to capture recipes and patches

*Publish as much of your layers as possible
* Either as tarballs or full git repositories
* Add them to the layer index if they’re open source
(https://layers.openembedded.org)

*|solate proprietary recipes from open source recipes

https://layers.openembedded.org/

Local Configuration i

*When providing layers, watch out for changes in
local.conf

*Two possible solutions:

* Version control local.conf
 Capture local.conf as part of the build

*Also consider including bblayers.conf

Excluding Unwanted LicensesGroup e

*The INCOMPATIBLE_LICENSE variable allows recipes to be

excluded by license
* Prevents accidental inclusion of unwanted code

*Applies to target packages only

meta-gplv2 layer may be needed if excluding GPL 3.0 or
later

*Values should be standardised on the SPDX

License List to avoid confusion
* See https://spdx.org/licenses/

https://spdx.org/licenses/

License Flags IO T

* Another method of excluding recipes by license class

*May be used to highlight non-copyright issues

 Patented algorithms
« Commercial license / EULA

*Flagged recipes are excluded by default
*Set LICENSE FLAGS WHITELIST to enable them

Issues with Language Packageé@aﬁigerség;gm

*Many newer languages use their own package managers
* Go, NPM (nodejs), Cargo (Rust)

*These present issues for Embedded development and

license compliance
* These just don’t seem to be first class concerns

*Features we need from these package managers
 Offline build support
« Download source archive
* Including license text & other collateral
« HTTP/HTTPS proxy support
e Source mirror support

Generating SPDX Documents Group

* SPDX (https://spdx.dev/) is “An open standard for communicating
software bill of material information, including components,
licenses, copyrights, and security references.”

* SPDX is supported in Yocto Project by the meta-spdxscanner layer

* Provides tools to scan source code for licenses and work with SPDX documents
» These processes are typically slow

* May extend build times by several hours

 Usable on release builds, may be intolerable on day-to-day dev builds
* See http://git.yoctoproject.org/cgit/cgit.cgi/meta-spdxscanner/

* Supports scancode-toolkit for SPDX document generation
*Set INHERIT += "scancode-tk" in local.conf
*Or use inherit scancode-tk in desired recipes

* See https://scancode-toolkit.readthedocs.io/en/latest/

https://spdx.dev/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-spdxscanner/
https://scancode-toolkit.readthedocs.io/en/latest/

AUTOM.L TIVE

GRADE LINUX
rou
vlua)

 Fossology is a more fully featured system for compliance scanning

and signoff
* Runs as a service with a web interface and an API

Integrating with Fossology

*Integration is also provided by the meta-spdxscanner layer
» fossology-python or fossology-rest bbclasses may be used
 Upload source code to a Fossology instance

*Scanning, review and document generation is done

asynchronously through the Fossology interface
« SPDX documents are not generated directly as part of the Yocto Project build

*See https://www.fossology.org/

https://www.fossology.org/

Future Work Ao e

* Better integration with language package managers
* May require changes to NPM, Cargo, etc

* Automatic generation of a plain text or HTML license document
for an image

*Integration with other license compliance tooling
« OSS Review Toolkit (https://github.com/oss-review-toolkit/ort)

*License scanning & SPDX document generation for Yocto Project
releases
* Provide a feedback loop to confirm license metadata in recipes
is correct
* Non-trivial!

https://github.com/oss-review-toolkit/ort

\ mmmm

©
AUTOML TIVE

Q & A GRADE LINUX

ALL MEMBER MEETING
4 0 (]

“Group

